C.U.SHAH UNIVERSITY Winter Examination-2021

Subject Name: Theories of Ring and Field

Subject Code: 5S	C03TRF1	Branch: M.Sc. (Mathematics)		
Semester: 3	Date: 16/12/2021	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1			Attempt the Following questions	(07)
		a.	Give example of division ring which is not field.	(02)
		b.	What is characteristic of Z_p ? Where p is prime.	(01)
		c.	Define: Field.	(01)
		d.	Define: Maximal ideal.	(01)
		e.	Is Gaussian ring a field?	(01)
		f.	Give an example of ring which is Integral domain but not field.	(01)
Q-2			Attempt all questions	(14)
	a.		If 'a' is an element in a commutative ring R with unity then prove that the set $S = \{ra \mid r \in R\}$ is a principal ideal of R generated by a.	(06)
	b.		Prove that every Euclidean ring is a principal ideal ring.	(05)
	c.		Prove that every field is a Euclidean ring.	(03)
			OR	
Q-2			Attempt all questions	(14)
	a.		Let <i>R</i> be a Euclidean ring and let $a, b \in R$ not both zero then prove that <i>a</i> and <i>b</i> have gcd 'd' that can be expressed as $d = \lambda a + \mu b$ for some $\lambda \mu \in R$	(05)
	b.		If any two nonzeroelements a and b in a Euclidean ring R then prove that they have L.C.M. in R .	(05)
	c.		Prove that Gaussian ring Z[i] is a commutative ring with unity under the	(04)

operation '+' and '.'

		1	
Q-3	a.	Attempt all questions Let R be a Euclidean ring then prove that every element in R is either unit in R or can be written as the product of a finite number of prime elements of R	(14) (05)
	b.	Prove that characteristic of an integral domain is either 0 or prime.	(05)
	c.	Give an example of ring which is division ring but not a field.	(04)
		OR	
Q-3	a.	Attempt all questions State and prove Unique factorization theorem.	(14) (06)
	b.	Let $R = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \neq 0, a, b, c, d \in Z \right\}$ and $I = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \neq 0, a, b \in Z$. Prove that I is neither left ideal nor right ideal.	(04)
	c.	Let <i>R</i> be a ring and I_1 , I_2 be two ideals then prove that $I_1 + I_2$ is ideal in <i>R</i> .	(04)
		SECTION – II	
Q-4		Attempt the Following questions	(07)
		a. Show that the polynomial $(a_1, b_2) = (a_1, b_2) + (a_2, b_3) + (a_1, b_2) + (a_1, b_3) +$	(02)
		$f(x) = 1 - x + x^2 - x^3 + \dots + x^{p-1}$ where $p > 1$ is irreducible over Q .	
		b. Define: Extension field.	(01)
		c. Define: Splitting field.	(01)
		d . State factor theorem.	(01)
		e. How many elements are in $Z_2[x] / \langle x^2 + x + 1 \rangle$?	(01)
		f. Is $f(x) = x^5 + 9x^4 + 12x^2 + 6$ reducible over <i>Q</i> ?	(01)
Q-5		Attempt all questions	(14)
	a.	State and prove Eisentein criterion.	(07)
	b.	State and prove Gauss Lemma.	(04)
	C.	Prove that $F[x]$ is Euclidean ring.	(03)
		OR	
Q-5	a.	Attempt all questions Let K be an extension field of F. Then an element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F.	(14) (07)
	b.	Let <i>K</i> be an extension field and $a \in K$ be algebraic over <i>F</i> .Suppose <i>a</i> satisfy an irregular polynomial $p(x) \in F[x]$ then prove that $p(x)$ must be	(07)

a minimal polynomial for 'a' over F

Q-6		Attempt all questions	(14)
	a.	Let <i>F</i> be a field and <i>K</i> be an extension field. Prove that a polynomial of degree <i>n</i> over a field can have atmost <i>n</i> roots in any extension field.	(07)
	b.	In usual notation find $G(C.R)$.	(04)
	c.	Prove that $G(K, F)$ is a subgroup of $Auto(K)$.	(03)
		OR	
Q-6		Attempt all Questions	(14)
-	a.	If L is algebraic extension of K and K is algebraic extension of F then prove that L is algebraic extension of F	(07)
	b.	Prove that p^{th} cyclotomic polynomial is irreducible over Q where p is prime.	(04)

c. Prove that every finite extension K of a field F is algebraic. (03)

